Inhibition of vacuolar H+ ATPase enhances sensitivity to tamoxifen via up-regulation of CHOP in breast cancer cells
Jin HO, Lee YH, Kim HA, Kim EK, Noh WC, Kim YS, Hwang CS, Kim JI, Chang YH, Hong SI, Hong YJ, Park IC, Lee JK.
Biochem Biophys Res Commun.
14 July 2013
Resistance of estrogen receptor-positive breast cancer cells to tamoxifen represents a major barrier to the successful treatment of breast cancer. In the present study, we found that vacuolar H+ ATPase (vATPase) inhibitors, bafilomycin A1 and concanamycin A, sensitize tamoxifen-induced cell death. siRNA targeting ATP6V0C, a 16-kDa hydrophobic proteolipid subunit of vATPase that plays a central role in H+ transport, markedly increased cell death induced by tamoxifen. Interestingly, bafilomycin A1 induced up-regulation of DR4/DR5 and CHOP. Knock-down of CHOP by siRNA suppressed the cell death induced by bafilomycin A1 and tamoxifen, suggesting that bafilomycin A1-mediated CHOP activation sensitizes to tamoxifen. In addition, we found that bafilomycin A1 enhances TRAIL-induced cell death in breast cancer cells. Furthermore, we showed that combination of vATPase inhibitors with tamoxifen also effectively induced cell death in HER2- and ERα-overexpressing breast cancer cells. Overall, our results demonstrate that inhibition of vATPase can potentiate the apoptotic effects of tamoxifen through up-regulation of CHOP.